哈喽,这里是一飞生物学,我是教数学的生物老师兼小编文人佩刀,好久没有学习数学了是吧。有些小伙伴都等不及了是吧,今天我们来学习一波数学。话不多说,请往下看。
第一节:平面直角坐标系
①有序数对
②平面直角坐标系
?????????第二节:坐标的简单应用
①用坐标表示地理位置
②用坐标表示平移
?????????????(以上图片均来源于网络,仅供学习使用)
一、知识点梳理
第一节:平面直角坐标系
1.有序数对:有顺序的两个数a和b组成的数对,记作(a,b)。利用有序数对可以精确表示一个位置,这两个数据可以表示“排和列”,“列和排”,“排和座号”,“纬度和经度”等。
2.有序数对(a,b)与(b,a)是不一样的,它们分别表示不同的含义。
3.平面直角坐标系:平面内两条互相垂直,原点重合的数轴组成的体系。其中,水平的数轴称为x轴(或叫横轴),习惯上定义右边为正方向。(左负右正)
竖直方向的数轴为y轴(或叫纵轴),习惯上定义上方为正方向。(上正下负)
两条数轴的交点为平面直角坐标系的原点
4.平面内任意一点的位置,可以用有序数(x,y)对来表示,这个有序数对就叫做这个点的坐标。
确定一个点的坐标方法:过这个点分别作x轴和y轴的垂线,在x轴和y轴上的垂足对应的点就分别对应有序数对(x,y)。
5.坐标的规律:原点为(0,0)
x轴上的点,纵坐标为0,可表示为(x,0);
y轴上的点,横坐标为0,可表示为(0,y)。
6.平面直角坐标系被两条坐标轴分成四部分,分别叫做象限,按逆时针顺序分别为第一象限,第二象限。第三象限和第四象限。(注意:x轴和y轴上的点不属于任何象限。)如图所示:?7.各象限上的点的坐标规律第一象限:横坐标为正数,纵坐标为正数。记为(正,正)
第二象限:横坐标为负数,纵坐标为正数。记为(负,正)
第三象限:横坐标为负数,纵坐标为负数。记为(负,负)
第四象限:横坐标为正数,纵坐标为负数。记为(正,负)
8.对于一条数轴上的点,有实数与之对应。同理,平面直角坐标系中任意一个点,也有一个有序数对与之对应。第二节:坐标方法的简单应用
1.我们已经知道,平面直角坐标系内的任意一个点都有一个有序数对与之对应,即都可以用一个坐标来表示。反之,我们可以用坐标来表示平面直角坐标系内的任意一点。这个点可以表示一个地理位置。
利用平面直角坐标系表示一个地理位置时,往往有如下步骤:
①建立坐标系,选择一个适当的点作为原点(参照点),确定x轴,y轴的正方向。
②根据具体情况确定单位长度。(建议以最小那个数据作为单位长度)
③根据已知条件,在坐标平面内标出这些点,写出各点的坐标与名称。
2.一般地,将平面内的一个点平移遵循如下规律:
①水平方向移动(左右平移),y轴不变x轴变,左减右加(向左平移,x减去平移的单位长度;向右平移,x加上平移的单位长度)
②竖直方向移动(上下平移),x轴不变y轴变,上加下减(向下平移,y减去平移的单位长度;向上平移,y加上平移的单位长度)
一个图形整体进行平移时,图形的形态,大小将不发生变化。但图形上的每个顶点位置坐标发生了平移,且遵循平移规律。
反之:一个点或图形的的各个点,若横坐标加上或减去一个数,则说明水平向右或向左平移了;若纵坐标加上或减去一个数,则说明向上或向下平移了。
二、注意问题
1.写有序数对时,注意两个数的对应顺序。(a,b)与(b,a)是不同的有序数对哦。
2.有一点A(a,b),若ab>0,则点A在第一或第三象限;若ab<0,则点A在第二或第四象限;若ab=0,则点A在坐标轴上(要么在x轴上,要么在y轴上)
预览时标签不可点收录于话题#个上一篇下一篇